Bile acids. XXXVII. Identification of the 3β isomers of allocholic and allochenodeoxycholic acids as metabolites of 5α -cholestanol in the rat

Burton W. Noll,¹ Stephen A. Ziller, Jr.,² E. A. Doisy, Jr., and William H. Elliott³

Department of Biochemistry, St. Louis University School of Medicine, St. Louis, Missouri 63104

Abstract Bile was collected for 18–24 days from adult male rats with cannulated bile ducts that had received intraperitoneally 0.8 mg of 5α -[4-14C, 3α -³H]cholestan-3 β -ol. Bile from the first 2 days containing 14.2% of the administered 14C and 3.3% of the ³H was hydrolyzed, and the bile acids were separated by acetic acid partition chromatography. The previously unidentified metabolite more polar than cholic and allocholic acids was identified by isotopic dilution as 3β , 7α , 12α -trihydroxy- 5α -cholanic acid and represented 3% of the biliary ¹⁴C and 15% of the ³H. Similarly, 3β , 7α -dihydroxy- 5α -cholanic acid was identified in fractions more polar than allochenodeoxycholic acid and represented 0.6% of the biliary ¹⁴C and 8% of the ³H. More polar fractions contained 4% of the ¹⁴C and 31% of the ³H in unidentified metabolites.

SBMB

JOURNAL OF LIPID RESEARCH

Supplementary key words bile fistula rat · cholestanol metabolism · isomeric allocholanic acid · 5α -cholanic acids · 5α -[4-1⁴C, 3α -³H]cholestan-3 β -ol · 3β -hydroxy allocholanic acids

 \mathbf{L}_{N} CONTINUATION of our studies on the identification of bile acids derived from cholestanol (1-4) and the mechanism of their formation, we have investigated the nature of a third unidentified metabolite reported by Karavolas and Elliott (2). Earlier studies have shown that allocholic

acid (1, 2) is the major biliary acid obtained after intracardial administration of cholestanol to the rat with a cannulated bile duct and that allochenodeoxycholic acid is the principal dihydroxy acid formed from this sterol (3). This report establishes the identity of the 3β epimers of these allo acids as biliary metabolites of cholestanol in the rat. Preliminary reports of some of these studies have appeared (5, 6).

MATERIALS AND METHODS

Preparation of 5α -[4-14C, 3α -3H]cholestan-3\beta-ol

5α-Cholestan-3-one (76 mg, mp 132–133°C, prepared according to Bruce [7]) in 5 ml of cold methanol was reduced with 4 mg of sodium [8H]borohydride (about 10 mCi). After dilution of the mixture and extraction with ether, the ether-soluble material was purified by chromatography on a column of silver nitrate-silicic acid $(50 \text{ g}, 25 \text{ cm} \times 18 \text{ mm})$ (3). Unchanged cholestanone appeared in fractions eluted with hexane-benzene 95:5; 8.2 mg of 5 α -cholestan-3 α -ol containing 19% of the recovered tritium was eluted with hexane-benzene 85:5. After elution with an additional 175 ml of the above solvent, 5α -cholestan- 3β -ol was eluted with an additional 200 ml (30.7 mg containing 81% of the recovered ³H). The desired product was acetylated and the acetate was purified by chromatography on neutral alumina, grade II. After alkaline hydrolysis of the acetate, chromatography of the sterol on a column of silver nitrate-silicic acid, and recrystallization from ethanol, the product showed no significant change in specific activity $(1.25 \times 10^8 \text{ dpm}/$ mg). Oxidation of an aliquot to 5α -cholestan-3-one and examination of the product showed that no more than

Abbreviations: Systematic nomenclature of the compounds referred to in the text by their trivial names is as follows: cholestanol, 5α -cholestan- 3β -ol; cholestanone, 5α -cholestan-3-one; allocholic acid, 3α , 7α , 12α -trihydroxy- 5α -cholan-24-oic acid; allochenodeoxycholic acid, 3α , 7α -dihydroxy- 5α -cholan-24-oic acid; all 5α -cholanic acids are 5α -cholan-24-oic acids.

¹ Present address: Miller Laboratories, Inc., St. Louis, Mo. 63132.

² Present address: The Proctor and Gamble Co., Cincinnati, Ohio.

³ Author to whom to address correspondence.

Bile Sample	Bile Acid Fraction	Water Washes of BAF ^a	Non- saponifiable Fraction	Water Washes of NSF ^a	Hydrolyzed, Extracted Bile	Total Recovered
Rat A, days 1-2			· · · · · · · · · · · ·			
dpm ${}^{14}C \times 10^{-5}$	8.12	0.40	0.83	0.08	0.45	9.88
% of biliary ¹⁴ C	78.1	3.8	8.0	0.8	4.3	95.0
dpm ³ H × 10 ^{−5}	5.44	0.47	4.20	0.14	3.15	13.4
℅ of biliary ³H	41.5	3.6	32.0	1.1	24.0	102.1
Rat A, days 3–4						
dpm ¹⁴ C × 10 ^{−5}	6.33	0.96	0.66	0.08	0.84	8.87
% of biliary ¹⁴ C	71.4	10.8	7.4	0.9	9.5	98.4
dpm ³ H × 10 [−]	3.39	3.52	3.34	0.17	6.17	16.6
$\%$ of biliary $^{3}\mathrm{H}$	17.8	18.5	17.6	0.9	32.5	87.4
Rat A, days 5-6						
dpm ${}^{14}C \times 10^{-5}$	2.54	0.80	0.76	0.04	0.60	4.74
% of biliary ¹⁴ C	38.1	12.0	11.4	0.6	9.0	71.2
dpm $^{3}H \times 10^{-5}$	3.49	2.43	4.07	0.18	6.56	16.7
% of biliary ³ H	19.9	13.9	23.3	1.0	37.5	95.4
Rat B, days 1–2						
dpm ¹⁴ C × 10 ^{−5}	3.00	0.17	0.28	0.07	0.16	3.68
% of biliary ¹⁴ C	71.4	4.0	6.6	1.7	3.7	87.4
dpm $^{3}H \times 10^{-5}$	2.54	0.07	1.38	0.05	0.97	5.01
⅔ of biliary ³H	54.0	1.5	29.4	1.1	20.6	106.6

TABLE 1. Distribution of radioactivity in extracts of hydrolyzed bile after administration of 5α -[4-14C, 3α -8H]cholestan-3\beta-ol to rats A and B

^a BAF, bile acid fraction; NSF, nonsaponifiable fraction.

0.05% of the tritium in 5α - $[3\alpha$ -³H]cholestan- 3β -ol could be located at positions other than the C-3 position.

Doubly labeled cholestanol was prepared by combining 2.514 mg of 5α -[4-¹⁴C]cholestan- 3β -ol (sp act 2.02 \times 10⁷ dpm/mg, purified by chromatography on silver nitrate-silicic acid [4]) with 2.127 mg of the above tritiated cholestanol. The product was chromatographed on the silver nitrate-silicic acid column (calculated specific activities: 5.73 \times 10⁷ dpm ³H/mg and 1.09 \times 10⁷ dpm ¹⁴C/mg; ³H/¹⁴C = 5.23). The tritiated component exhibited a small isotope effect and was eluted slightly later than the ¹⁴C moiety (final sp act = 4.89 \times 10⁷ dpm ³H/mg, 0.905 \times 10⁷ dpm ¹⁴C/mg; ³H/¹⁴C = 5.40). A portion of this material was oxidized to the ketone; no tritium was detected in the 5 α -cholestan-3-one.

Chromatography

Bile acids were separated by chromatography on an acetic acid partition column (8). The fractions have been designated according to the percentage of benzene in hexane; e.g., fraction 60-1 represents the first fraction of the eluent containing 60% benzene in hexane.

Other methods

Radioactivity was determined with a Packard Tri-Carb liquid scintillation spectrometer, model 3314, equipped with external standardization. Bray's solution (9), 15 ml, was used for the assay. Melting point determinations were taken on a Fisher-Johns apparatus and are reported as read.

Bile acids

Cholic acid was a generous gift of the Wilson Laboratories, Chicago, Ill. Allocholic and allochenodeoxycholic acids and their 3β isomers were prepared from methyl cholate and methyl chenodeoxycholate, respectively, by allomerization with Raney nickel (10, 11).

RESULTS

Preliminary experiments

These experiments were undertaken with the radioactive metabolites previously reported (3) in fraction 100-1 of the free bile acids obtained from bile collected during the first 2 days from a rat that had received daily subcutaneous injections of L-thyroxine at a level of 250 $\mu g/kg/day$ for 26 days prior to cannulation of the bile duct and intraperitoneal administration of 0.38 mg (1.16 \times 10⁷ dpm) of 5 α -[4-14C]cholestan-3 β -ol. The residue (about 0.8 mg) from an aliquot of fraction 100-1 containing 4.26 \times 10⁴ dpm was methylated with an excess of diazomethane. The product was dried in vacuo for 3 hr at 55°C and was diluted with 30.0 mg of synthetic methyl 3β , 7α , 12α -trihydroxy- 5α -cholanate, mp 200–201°C (12). The calculated specific activity of the mixture was 1.38 \times 10³ dpm/mg; after two crystallizations from a mixture of acetone and hexane, the specific activities were $1.40 \times$ 10^3 dpm/mg and 1.39×10^3 dpm/mg, respectively. Similar results were obtained with material from fractions 100-1 and 100-2 from the second rat (3). After four

OURNAL OF LIPID RESEARCH

ASBMB

OURNAL OF LIPID RESEARCH

crystallizations of the diluted material from acetonehexane and three crystallizations from benzene, the specific activity changed from 632 dpm/mg to 612 dpm/ mg, suggesting the identity of this metabolite with $3\beta_{1}7\alpha_{1}2\alpha_{1}$ -trihydroxy- $5\alpha_{1}$ -cholanic acid.

Metabolism of $[4^{-14}C, 3\alpha^{-3}H]$ cholestanol

 5α -[4-¹⁴C, 3α -³H]Cholestan- 3β -ol (9.05 × 10⁶ dpm ¹⁴C/mg, 4.89 × 10⁷ dpm ⁸H/mg; ³H/¹⁴C = 5.40) was administered intraperitoneally immediately after surgery to two adult male rats (303 and 308 g, St. Louis University Colony) with cannulated bile ducts. Rat A received 0.81 mg and rat B received 0.82 mg; the solution for injection contained 1 mg of sterol dissolved in 0.1–0.2 ml of warm ethanol, 80–120 mg of Tween 80, and sufficient 0.9% sodium chloride to make a volume of 1 ml. Bile was collected for 24 and 18 days, respectively. Some fluid drained through the incisions of both animals, especially rat B, where the radioactivity could be detected with a laboratory monitor.

Bile from rat A from days 1 and 2, days 3 and 4, and days 5 and 6 was combined into three fractions containing 10.4, 9.08, and 6.06 \times 10⁵ dpm of ¹⁴C and 1.31, 1.90, and 1.75×10^6 dpm of ³H, respectively; each fraction was hydrolyzed with KOH according to the procedure of Mahowald et al. (13). Bile from rat B from days 1 and 2 containing 4.20×10^5 dpm of ¹⁴C and 4.70×10^5 of ³H was also combined, hydrolyzed, and fractionated. The distribution of radioactivity is shown in Table 1. The biliary acid fraction (137 mg) obtained from the bile of rat A from days 1 and 2 was chromatographed on an acetic acid partition column (Fig. 1). Only 4% of the chromatographed ³H and 1% of the ¹⁴C appeared in the region in which monohydroxy bile acids and fatty acids are eluted (fraction 0-1). Fractions 20-4 and 40-1, which correspond to 3α , 7α -dihydroxy- 5α -cholanic acid, contained 8% of the chromatographed 14C and 9% of the ³H; however, the tritium appeared to be a component of the next peak. Fractions 40-2 to 60-1 contained 48% of the chromatographed ³H associated with 8% of the ¹⁴C. Fractions 80-1 to 80-3, which correspond to 3α , 7α , 12α -trihydroxy- 5α -cholanic acid, contained 72% of the ${}^{14}\!\mathrm{C}$ and 9% of the ${}^{3}\!\mathrm{H}.$ Fractions 80-4 to 100-2 contained 20% of the chromatographed ³H and 7% of the 14C. Similar distributions of radioactivity were obtained with the bile acid fractions from days 3 and 4 and from days 5 and 6.

Identification of metabolite in fractions 80-4 to 100-2

Fractions 80-4, 100-1, and 100-2 (Fig. 1), which originally contained 5.74 \times 10⁴ dpm of ¹⁴C and 1.08 \times 10⁵ dpm of ³H, were combined and the residue was methylated with diazomethane. The mass (3.3 mg) was diluted with 49.83 mg of methyl 3β , 7α , 12 α -trihydroxy-

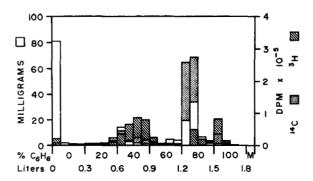


FIG. 1. Partition chromatography of the acidic fraction derived from bile from rat A in the first 2 days after administration of 5α -[4-14C, 3α -3H]cholestan-3 β -ol. The height of the open bars from the base line denotes the amount of mass in the fractions; the heights of the stippled bars and hatched bars from the base line represent the amounts of ¹⁴C and ³H in the fractions, respectively. M, methanol.

 5α -cholanate and chromatographed on an acetic acid partition column (Fig. 2); fractions 40-3 and 40-4 were combined and the residue was crystallized to constant specific activities (Table 2). On the basis of the final specific activities, methyl 3β , 7α , 12α -trihydroxy- 5α -cholanate represents 2.43 \times 10⁴ dpm of ¹⁴C and 8.03 \times 10⁴ dpm of ³H in the diluted sample. Therefore, 3β , 7α , 12α -trihydroxy- 5α -cholanic acid represents at least 3% of the ¹⁴C and 15% of the ³H in the biliary fraction recovered during the first 2 days after administration of 5α -[4-¹⁴C, 3α -³H]cholestan- 3β -ol to rat A.

Identification of metabolites in fractions 20-4 to 60-1

Fractions 20-4 to 60-1 (Fig. 1), containing 1.32×10^5 dpm of ¹⁴C and 3.07×10^5 dpm of ³H, were combined and the residue was methylated with diazomethane. To the methylated material (22 mg) was added 49.80 mg of methyl 3α , 7α -dihydroxy- 5α -cholanate and 44.90 mg of methyl 3β , 7α -dihydroxy- 5α -cholanate. The diluted

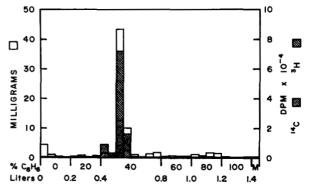


Fig. 2. Partition chromatography of the material from fractions 80-4 to 100-2 (Fig. 1) after methylation and isotopic dilution with methyl 3β , 7α , 12α -trihydroxy- 5α -cholanate. M, methanol.

BMB

TABLE 2. Isotopic dilution of the methylated metabolite from fractions 80-4, 100-1, and 100-2 (Fig. 1) with methyl 3β , 7α , 12α -trihydroxy- 5α -cholanate

Crystallization	Weight of	Weight in Mother	Specific Activities			
No. and Solvent	Crystals	Liquor	14C	3H	$^{3}H/^{14}C$	
	mg	mg	dpm/mg			
Calculated ^a	53.1		1048	1957	1.9	
After pa	rtition chr	omatogra	phy (Fig	g. 2)		
Fractions 40-3 and 40-4	53.3	0	576	1650	2.9	
1. Acetone	37.6	15.7	518	1620	3.1	
2. Acetone	29.8	6.9	498	1620	3.2	
3. Acetone	22.1	5.2	489	1590	3.3	
4. Acetone	15.5	3.2	482	1630	3.4	
5. Ethyl acetate	10.0	2.6	470	1600	3.4	
6. Ethyl acetate	6.1	1.5	487	1610	3.3	

^a Methyl 3β , 7α , 12α -trihydroxy- 5α -cholanate, 49.83 mg, was added to the combined methylated fractions that contained 3.3 mg, 5.57×10^4 dpm ¹⁴C, and 1.04×10^5 dpm ³H. If it is assumed that the amount of methyl 3β , 7α , 12α -trihydroxy- 5α -cholanate in the fractions is negligible, then the calculated specific activities are 1118 dpm ¹⁴C/mg and 2090 dpm ³H/mg.

sample was chromatographed on an acetic acid partition column (Fig. 3). Fractions 10-1 and 10-2, which correspond to methyl 3α , 7α -dihydroxy- 5α -cholanate, were combined (58.6 mg) and the residue was crystallized to constant specific activity (Table 3). Since most of the 22 mg of the original combined fractions should consist of methyl chenodeoxycholate, which is difficult to crystallize (14), it would be expected to remain in the mother liquors. Accordingly, the first crop of crystals was slightly sticky, but successive crystallizations provided clean

TABLE 3. Crystallization of methyl 3α , 7α -dihydroxy- 5α cholanate from the isotopic dilution of the methylated metabolites from fractions 20-4 to 60-1 (Fig. 1)

Crystallization	Weight of	Weight in Mother	Melting Point of	Specific Activities	
No. and Solvent	Crystals	Liquor	Crystals	¹⁴ C	3H
	mg	mg	°C		$mg \times -3$
Calculated ^a	49.8			1.01	0.15
1. Acetone-water	35.1	21.5	116-122	0.88	0.13
2. Acetone-water	22.5	11.5	119-124	0.90	0.11
3. Acetone-water	19.2	2.7	125-128	0.93	0.07
4. Acetone-water	14.3	2.7	127-129	0.92	0.07
5. Benzene-hexane	6.2	1.9	129-130	0.92	0.10

^a Fractions 10-1 and 10-2 (Fig. 3) were combined for crystallization. The calculations are based on the assumption that the 58.6 mg present consists only of methyl chenodeoxycholate and methyl $3\alpha_{\gamma}7\alpha$ -dihydroxy- 5α -cholanate (49.80 mg added in isotopic dilution) and that all the radioactivity in these fractions (5.02 × 10⁴ dpm ¹⁴C and 0.77 × 10⁴ dpm ³H) is methyl $3\alpha_{\gamma}7\alpha$ dihydroxy- 5α -cholanate.

232 Journal of Lipid Research Volume 14, 1973

crystals. The melting point of the final crop of crystals was $129-130^{\circ}$ C (reported mp $125-126^{\circ}$ C [3]). On the basis of the final specific activity, 3α , 7α -dihydroxy- 5α -cholanic acid represents at least 5.6% of the total ¹⁴C in the biliary acid fraction.

Fractions 10-5 through 10-7 (Fig. 3), containing 33.8 mg, 1.10 \times 10⁴ dpm of ¹⁴C and 4.72 \times 10⁴ dpm of ³H, were combined and the residue was crystallized three times (Table 4). Partition chromatography of 5.4 mg of the third crop of crystals showed coincident elution of radioactivity and mass (Fig. 4). Although constant specific activities were not attained initially (perhaps due to low specific activities), final values of about 120 dpm of ¹⁴C and 970 dpm of ³H/mg were obtained. On the basis of these values, 3β , 7α -dihydroxy- 5α -cholanic acid represents 0.6% of the ¹⁴C and 8% of the ³H in the total bile acid fraction recovered during the first 2 days.

Fractions 15-1 to 20-1 (Fig. 3) contained 28 and 55% of the ¹⁴C and ³H, respectively, in the diluted sample, or 4 and 31% of the ¹⁴C and ³H, respectively, in the biliary acid fraction. The nature of these metabolites is under investigation.

DISCUSSION

These experiments were undertaken to elucidate the nature of a third unidentified acidic metabolite reported earlier after administration of 5α -[4-14C]cholestanol to euthyroid and hyperthyroid rats (1, 2). Moreover, a detailed examination of the elution pattern of methyl allochenodeoxycholate obtained from the dihydroxy acid fractions (fractions 20-1 to 60-1) in these studies suggested the presence of an additional metabolite. To locate these metabolites more readily, 5α -[3 β -³H]cholestanol was added to the 5α -[4-14C]cholestanol for these studies.

The unidentified metabolite more polar than allocholic acid (1, 3) appearing in fractions 80-4 to 100-2

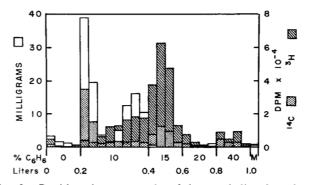


FIG. 3. Partition chromatography of the metabolites from fractions 20-4 to 60-1 (Fig. 1) after methylation and isotopic dilution with methyl 3α , 7α - and 3β , 7α -dihydroxy- 5α -cholanates. M, methanol.

TABLE 4. Crystallization of methyl 3β , 7α -dihydroxy- 5α -
cholanate from isotopic dilution of the methylated
metabolites from fractions 20-4 to 60-1 (Fig. 1)

Crystallization	Weight of Crystals	Weight in Mother Liquor	Specific Activities		
No. and Solvent			14C	3H	³ H/14C
	mg	mg	dpm/mg		·····
Calculated ^a	33.8		325	1400	4.3
1. Acetone	23.9	6.4	156	1010	6.5
2. Acetone	14.5	9.0	141	976	6.9
3. Acetone	7.9	4.3	126	937	7.4
After	partition	chromatogr	aphy (H	Fig. 4)	
Fractions 10-4 to 10-7	5.6	Ű	122	972 972	8.0

^a Fractions 10-5 to 10-7 (Fig. 3), which contained 33.8 mg, 1.10×10^4 dpm ¹⁴C, and 4.72×10^4 dpm ⁸H were combined and crystallized.

was obtained as 7 or 9%, respectively, of the chromatographed ¹⁴C from hydrolyzed bile of the euthyroid or hyperthyroid rat. Results of the present experiment with the doubly labeled sterol show a recovery of 7% of the ^{14}C and 20% of the ^{3}H in these fractions. Identification of this metabolite as the 3β isomer of allocholic acid was facilitated by knowledge that the 3β epimers of the allo bile acids are eluted after their 3α epimers from the Celite column in acetic acid partition chromatography (11). Thus, 3β , 7α , 12α -trihydroxy- 5α -cholanic acid, which is eluted in fractions 80-4 to 100-2 (4, 12), was identified by reverse isotopic dilution as the methyl ester before and after coincident elution of mass and isotopes from the column. Accordingly, these results confirm the identity of 3β , 7α , 12α -trihydroxy- 5α -cholanic acid as a metabolite of cholestanol in the euthyroid and hyperthyroid rat (3).

The identification of two of the metabolites in fractions 20-4 to 60-1 was also facilitated by the doubly labeled sterol. From hydrolyzed bile of the hyperthyroid rat approximately two-thirds of the radioactive metabolites that appeared in fractions associated with dihydroxy bile acids was identified as allochenodeoxycholic acid. In the present experiments about one-third (36%) of the ¹⁴C in these fractions was identified as allochenodeoxycholic acid via the methyl ester. Most of the chromatographed tritium (57%) appeared in these fractions; at least 8% of the recovered ^{3}H and 0.5% of the ^{14}C was associated with 3β , 7α -dihydroxy- 5α -cholanic acid. These results illustrate the separation of the methyl esters of these acids isomeric at position 3 by partition chromatography (3) and demonstrate an ability to remove methyl chenodeoxycholate from methyl allochenodeoxycholate by repeated crystallization (11). The small amount of 3β , 7α -dihydroxy- 5α -cholanic acid recovered with ¹⁴C (0.5%) explains the absence of recognition and identifica-

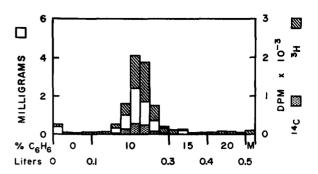


Fig. 4. Partition chromatography of methyl $3\beta_{3},7\alpha$ -dihydroxy- 5α cholanate obtained after three crystallizations (Table 4) of the material from fractions 10-5 to 10-7 (Fig. 3). M, methanol.

tion in earlier experiments in which only [4-14C]cholestanol was used. Additional unidentified metabolites in the dihydroxy acid fractions contain the major amount of tritium.

The data of Table 1 reveal some aspects of the metabolism of this doubly labeled sterol. The recovery in dpm of ¹⁴C and ³H in the bile acid fractions for rat A [bile acid fraction/(total recovery - nonsaponifiable fraction)] was, respectively: 90 and 59%, days 1-2; 77 and 26%, days 3-4; 66 and 28%, days 5-6. The amount of ³H retained in the hydrolyzed extracted bile [hydrolyzed bile/(total recovery - nonsaponifiable fraction)] was: 34%, days 1-2; 47%, days 3-4; 52%, days 5-6. In the conversion of the 3β -ol of the sterol to the predominant 3α -hydroxy allo bile acids, the 3α -³H of the sterol has been removed. On the other hand, the ${}^{3}H/{}^{14}C$ ratio of the material in the neutral fraction is rather constant: 5.06, days 1-2; 5.06, days 3-4; 5.36, days 5-6. The material in this fraction from days 1-2 was identified as unchanged substrate by silver nitrate-silicic acid chromatography.

In an investigation of the conversion of cholestanol to allo bile acids by rat liver, Björkhem and Gustafsson (15) concluded that 7α -hydroxylation of cholestanol precedes epimerization of the 3β -hydroxyl group and that 12α hydroxylation proceeded more efficiently with 5α cholestane- 3α , 7α -diol than with 5α -cholestane- 3β , 7α -diol or 7α -hydroxy- 5α -cholestan-3-one. Björkhem (16) has shown recently that the breaking of the C-H bond is not rate limiting in the microsomal 7α -hydroxylation of cholestanol or cholesterol, but is rate limiting in the conversion of cholest-5-ene- 3β , 7α -diol to 7α -hydroxycholest-4-en-3-one (17). In the latter case [4-14C]cholest-5ene-3 β ,7 α -diol was oxidized to 7 α -hydroxycholest-4-en-3one about five times faster than $[3\alpha^{-3}H]$ cholest-5-en-3 β , 7α -diol. If such an isotope effect is operative with 5α -[4-14C, 3α -8H]cholestane- 3β , 7α -diol obtained from the administered sterol, more 5α - $[3\alpha$ - $^{3}H]$ cholestane- 3β , 7α diol would be available for the pathway to 3β , 7α -dihydroxy-5 α -cholanic acid than from the corresponding

Downloaded from www.jlr.org by guest, on June 19, 2012

4-¹⁴C diol, and hence the ³H/¹⁴C ratio in this dihydroxy acid should be higher than that of the substrate. Similarly, 5α - $[3\alpha$ -³H]cholestane- 3β , 7α -diol should be less effectively 12α -hydroxylated than 7α -hydroxy- 5α -[4-¹⁴C]cholestan-3-one. 7α , 12α -Dihydroxy- 5α -[4-¹⁴C]cholestan-3-one should be converted in part to the 3β -ol by the microsomal enzymes and thence to 3β , 7α , 12α trihydroxy- 5α -cholanic acid (18). Thus, this trihydroxy allo acid should have a lower ³H/¹⁴C ratio than the substrate. Experiments to test this hypothesis are in progress; a preliminary report regarding suitable substrates for 12α -hydroxylation in the 5α series has been made (19).

A portion of the material presented herein is taken from the dissertation submitted to the Graduate School of St. Louis University by Burton W. Noll in partial fulfillment of the requirements for the degree of Doctor of Philosophy, 1970.

SBMB

JOURNAL OF LIPID RESEARCH

This investigation was supported by USPHS grant HE-07878, training grant 2T GM 446, and the St. Louis University Biochemistry Committee on Grants.

Manuscript received 8 September 1972; accepted 17 November 1972.

REFERENCES

- 1. Karavolas, H. J., W. H. Elliott, S. L. Hsia, E. A. Doisy, Jr., J. T. Matschiner, S. A. Thayer, and E. A. Doisy. 1965. Bile acids. XXII. Allocholic acid, a metabolite of 5α -cholestan- 3β -ol in the rat. J. Biol. Chem. 240: 1568-1572.
- Karavolas, H. J., and W. H. Elliott. 1965. Metabolism of neutral steroids. In The Biliary System. W. Taylor, editor. F. A. Davis, Philadelphia. 175-181.
- Ziller, S. A., Jr., E. A. Doisy, Jr., and W. H. Elliott. 1968. Bile acids. XXV. Allochenodeoxycholic acid, a metabolite of 5α-cholestan-3β-ol in the hyperthyroid rat. J. Biol. Chem. 243: 5280-5288.
- 4. Noll, B. W., L. B. Walsh, E. A. Doisy, Jr., and W. H. Elliott. 1972. Bile acids. XXXV. Metabolism of 5α -cholestan- 3β -ol in the Mongolian gerbil. J. Lipid Res. 13: 71-77.

- 5. Elliott, W. H., and S. A. Ziller, Jr. 1968. New metabolites of 5α -cholestanol in the hyperthyroid rat. Federation Proc. 27: 821. (Abstr.)
- 6. Noll, B. W., and W. H. Elliott. 1969. Mechanism of formation of 3α and 3β -hydroxy allo bile acids from 5α -cholestanol in the rat. Federation Proc. 28: 884. (Abstr.)
- Bruce, W. F. 1943. Cholestanone. In Organic Syntheses, Collective Vol. 2. A. H. Blatt, editor. 139.
- Matschiner, J. T., T. A. Mahowald, W. H. Elliott, E. A. Doisy, Jr., S. L. Hsia, and E. A. Doisy. 1957. Bile acids. I. Two new acids from rat bile. J. Biol. Chem. 225: 771-779.
- Bray, G. A. 1960. A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. *Anal. Biochem.* 1: 279-285.
- Mitra, M. N., and W. H. Elliott. 1968. Bile acids. XXIV. Raney nickel in the preparation of allocholanic acids. J. Org. Chem. 33: 2814-2818.
- Elliott, W. H. 1971. Allo bile acids. In The Bile Acids: Chemistry, Physiology and Metabolism. P. P. Nair and D. Kritchevsky, editors. Plenum Press, New York. 47-93.
- Mitra, M. N., and W. H. Elliott. 1968. Bile acids. XXIII. A new direct synthesis of allocholic acid and its 3β-isomer. J. Org. Chem. 33: 175-181.
- Mahowald, T. A., J. T. Matschiner, S. L. Hsia, R. Richter, E. A. Doisy, Jr., W. H. Elliott, and E. A. Doisy. 1957. Bile acids. II. Metabolism of deoxycholic acid-24-C¹⁴ and chenodeoxycholic acid-24-C¹⁴ in the rat. J. Biol. Chem. 225: 781-793.
- 14. Hofmann, A. F. 1963. The preparation of chenodeoxycholic acid and its glycine and taurine conjugates. Acta Chem. Scand. 17: 173-186.
- Björkhem, I., and J. Gustafsson. 1971. On the conversion of cholestanol into allocholic acid in rat liver. Eur. J. Biochem. 18: 207-213.
- 16. Björkhem, I. 1971. Isotope discrimination in steroid hydroxylations. Eur. J. Biochem. 18: 299-304.
- 17. Björkhem, I. 1969. On the mechanism of the enzymatic conversion of cholest-5-ene- 3β , 7α -diol into 7α -hydroxy-cholest-4-en-3-one. *Eur. J. Biochem.* 8: 337-344.
- 18. Björkhem, I., and K. Einarsson. 1970. Formation and metabolism of 7α -hydroxy- 5α -cholestan-3-one and 7α , 12α -dihydroxy- 5α -cholestan-3-one in rat liver. *Eur. J. Bio-chem.* 13: 174–179.
- Mui, M. M., and W. H. Elliott. 1972. Microsomal 12αhydroxylation of 26-oxygenated 5α-cholestane-3α,7α-diols. *Federation Proc.* 31: 889. (Abstr.)